МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Брянский государственный аграрный университет»

УТВЕРЖДАЮ

Нроректор по учебной работе

и цифровизации

А.В. Кубышкина

2023 г.

Инструментальные методы исследований в экологии

рабочая программа дисциплины

Закреплена за кафедрой агрохимии, почвоведения и экологии

Направление подготовки 35.03.03 Агрохимия и агропочвоведение

Профиль Агроэкология

Квалификация Бакалавр

Форма обучения очная

Общая трудоемкость 3 з.е.

Часов по учебному плану 108

Брянская область 2023

Программу составил:	
к.сх.н., доцент Чекин Г.В	14
Рецензент:	
к.б.н., доцент Мартынова Е.	B. Eblefry

Рабочая программа дисциплины «Инструментальные методы исследований в экологии» разработана в соответствии с ФГОС ВО-бакалавриат по направлению подготовки 35.03.03 Агрохимия и агропочвоведение, утвержденным приказом Министерства образования и науки Российской Федерации от « 26 » июля 2017 г. № 702 составлена на основании учебного плана 2023 года набора:

направление подготовки 35.03.03 Агрохимия и агропочвоведение профиль Агроэкология утвержденного Учёным советом Университета от «18» мая 2023 г. протокол № 10 Рабочая программа одобрена на заседании кафедры агрохимии, почвоведения и экологии Протокол № 9 от «18» мая 2023 г.

Зав. кафедрой: к.с.-х. н., доцент Силаев А.Л. __

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Формирование знаний по принципам и возможностям инструментальных методов исследования в экологических исследованиях, навыков работы с соответствующими приборами и способности критически оценивать полученные результаты.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Блок ОПОП ВО: Б1.В.1.ДВ.02.02

2.1 Требования к предварительной подготовке обучающегося:

Для освоения дисциплины обучающиеся используют знания, умения, навыки, способы деятельности и установки, сформированные в ходе изучения следующих дисциплин: «Химия», «Физика», «Высшая математика».

2.2 Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее: «Сельскохозяйственная экология», «Общее почвоведение», «Агрохимия», «Методы почвенных исследований», «Методы агрохимических исследований».

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ИНДИКАТОРАМИ ДОСТИЖЕНИЯ КОМПЕТЕНЦИЙ

Достижение планируемых результатов обучения, соотнесенных с общими целями и задачами ОПОП, является целью освоения дисциплины.

Освоение дисциплины направлено на формирование следующих компетенций:

Компетенция	Индикаторы дости-	
(код и наименование)	жения компетенций	Результаты обучения
(код и наименование)	(код и наименование)	
Профессиональные комі	петенции выпускников, уст	тановленные образовательной
	организацией (ПКС)	
		Знать: физические и физико-
		химические законы, описываю-
		щие процессы, которые приводят
		к формированию аналитического
		сигнала, особенности аналитиче-
		ских сигналов и способы их ре-
ПКС-1. Способен участво-		гистрации, понимать сущность
вать в проведении почвен-	ПКС-1.3. Участвует в	аналитических операций, сведе-
ных и агрохимических об-	проведении почвенных	ния о свойствах неорганических
следований земель, осу-	и агрохимических об-	и органических соединений.
ществлять анализ, оценку и	следований земель,	Уметь: использовать свойства
группировку почв по их ка-	осуществляет анализ,	химических веществ в лабора-
честву и пригодности для	оценку и группировку	торной и производственной
сельскохозяйственных	почв по их качеству и	практике, выбирать метод анали-
культур, составлять поч-	пригодности для воз-	за и прибор, а также критически
венные, агроэкологические	делывания сельскохо-	оценивать полученные результа-
и агрохимические карты и	зяйственных культур	ты.
картограммы		Владеть: методами физико-
		химического анализа почв, при-
		родных и сточных вод, сельско-
		хозяйственных растений, а также
		навыками работы на наиболее
		распространенных аналитиче-
		ских приборах.

4. РАСПРЕДЕЛЕНИЕ ЧАСОВ ДИСЦИПЛИНЫ ПО СЕМЕСТРАМ

D.		2	3	4	L	5	;		6	7	8	Ит	ого
Вид занятия								УΠ	РПД			УΠ	РПД
Лекция								28	28			28	28
Лабораторная работа								14	14			14	14
Практическая работа								14	14			14	14
KCP								2	2			2	2
Прием зачёта								0,15	0,15			0,15	0,15
Контактная работа обучающих-													
ся с преподавателем (аудитор-								58,15	58,15			58,15	58,15
ная)													
Самостоятельная работа								49,85	49,85			49,85	49,85
Итого								108	108			108	108

СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код за-	Наименование разделов и тем	Очная	форма	Индикатор до-	
нятия	/вид занятия/	Семестр	Семестр	стижения ком- петенции	
	Раздел 1. Общетеоретические вопросы				
1.1	Задачи инструментальных методов в экологических исследованиях /Лек/	6	2	ПКС-1.3.	
1.2	Техника безопасности при работе в химической лаборатории. Стадии физико-химического анализа. Математическая обработка результатов химического анализа	6	2	ПКС-1.3.	
1.3	Физико-химические явления и процессы в анализе.	6	2	ПКС-1.3.	
1.4	Подготовка проб почвы и растений к физико-химическому анализу	6	2	ПКС-1.3.	
1.5	Приборы и оборудование для пробоподготовки	6	5	ПКС-1.3.	
1.6	Решение задач и упражнений по теме "Математическая обработка результатов химического анализа"		5,85	ПКС-1.3.	
	Раздел 2. Оптические методы анализа в эколог	гических	исследо	ваниях	
2.1	Атомная спектроскопия	6	4	ПКС-1.3.	
2.2	Молекулярная спектроскопия	6	4	ПКС-1.3.	
2.3	Рефрактометрия. Поляриметрия	6	2	ПКС-1.3.	
2.4	Атомно-эмиссионная фотометрия пламени. Определение калия методом фотометрии пламени.	6	2	ПКС-1.3.	
2.5	Атомно-абсорбционная спектрофотометрия. Определение тяжелых металлов в объектах окружающей среды	ижелых металлов в объектах 6		ПКС-1.3.	
2.6	Абсорбционная спектрофотометрия растворов. Колориметрическое определение железа		2	ПКС-1.3.	

2.7	Определение концентрации водорастворимых веществ в растениеводческой продукции рефрактометрическим методом	6	2	ПКС-1.3.
2.8	Приборы: фотоколориметры, спектрофотометры, рефрактометры, поляриметры	6	5	ПКС-1.3.
2.9	Оформление отчётов и подготовка к защите ла- бораторных работ	6	4	ПКС-1.3.
2.10	Решение задач и упражнений по теме "Оптические методы анализа"	6	4	ПКС-1.3.
	Раздел 3. Электрохимические методы анализа ниях	в эколоі	гически	х исследова-
3.1	Потенциометрия	6	4	ПКС-1.3.
3.2	Полярография	6	2	ПКС-1.3.
3.3	Кондуктометрия	6	2	ПКС-1.3.
3.4	Потенциометрия. Прямое потенциометрическое определение нитрат-ионов с помощью ионселективных электродов	6	2	ПКС-1.3.
3.5	Потенциометрическое титрование смеси кислот	6	2	ПКС-1.3.
3.6	Кондуктометрия. Кондуктометрическое титрование смесей солей	6	2	ПКС-1.3.
3.7	Полярография. Определение микроэлементов методом ИВА	6	2	ПКС-1.3.
3.8	Приборы: потенциометры, полярографы, кондуктометры	6	5	ПКС-1.3.
3.9	Оформление отчётов и подготовка к защите ла- бораторных работ /	6	4	ПКС-1.3.
3.10	Решение задач и упражнений по теме "Электро-химические методы анализа"	6	4	ПКС-1.3.
	Раздел 4. Физико-химические методы разделен экологических исследованиях	ия и ког	нцентри	рования в
4.1	Экстракция	6	2	ПКС-1.3.
4.2	Хроматографические методы анализа	6	6	ПКС-1.3.
4.3	Экстракция	6	2	ПКС-1.3.
4.4	Тонкослойная и бумажная хроматография. Разделение фульвокислот по фракциям методом TCX		2	ПКС-1.3.
4.5	ВЭЖХ	6	2	ПКС-1.3.
4.6	Приборы и оборудование для экстракции и хроматографии	6	5	ПКС-1.3.
4.7	Оформление отчётов и подготовка к защите практических работ	6	4	ПКС-1.3.
4.8	Решение задач и упражнений по теме "Методы разделения и концентрирования"	6	4	ПКС-1.3.
	Зачет			

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

6.1. Рекомендуемая литература 6.1.1. Основная литература

No॒	Арторуу осоло	Zanwanyya	Гол	I/ o my
п/п	Авторы, соста-	Заглавие,	Год	Коли-
11/11	вители	издательство	изда-	чество
			ния	5-6
1	Мельченко, Г.Г.	Аналитическая химия и физико-химические	2005	ЭБС
		методы анализа. Количественный химический		IPR
		анализ: учебное пособие / Г. Г. Мельченко, Н.		BOOK
		В. Юнникова; под редакцией Н. В. Юнникова.		S
		 Кемерово : Кемеровский технологический 		
		институт пищевой промышленности, 2005. —		
		104 с. — ISBN 5-89289-343-X. — Текст : элек-		
		тронный // Электронно-библиотечная система		
		IPR BOOKS : [сайт]. — URL:		
		https://www.iprbookshop.ru/14351.html		
2	Гуськова В.П.	Аналитическая химия. Физико-химические ме-	2005	ЭБС
		тоды анализа : практикум / В. П. Гуськова, Л.		IPR
		С. Сизова, Н. В. Юнникова, Г. Г. Мельченко.		BOOK
		 Кемерово : Кемеровский технологический 		S
		институт пищевой промышленности, 2007. —		
		96 с. — ISBN 978-5-89289-438-8. — Текст :		
		электронный // Электронно-библиотечная си-		
		стема IPR BOOKS : [сайт]. — URL:		
		https://www.iprbookshop.ru/14356.html		
3	Васильев В. П.	Аналитическая химия. В 2 кн. Кн. 2. Физико-	M.:	24
		химические	Дрофа,	
		методы анализа: учеб. для вузов	2004	
		6.1.2. Дополнительная литература		1
1		Физико-химические методы анализа в агрохи-	M.:	48
		мии: учеб. пособие для вузов	Агро- пром-	
			издат,	
			1990	
2	Федоров А. А.,	Методы химического анализа объектов при-	М.: Ко-	12
	Казиев Г. З., Казакова Г. Д.	родной среды: учеб. для вузов	лосС,	
	казакова г. д.		2008	
	Почин Г. В	6.1.3. Методические указания	Гиа	bra
	Чекин Г. В.	Физико-химические методы анализа: практи-		ЭБС
		кум [электронный ресурс] Электрон. дан. —	L KI C'Y	Брян-
		Брянск : БГАУ (Брянский государственный	A,	ский
		аграрный университет), 2014.	2004	ГАУ

6.2. Перечень современных профессиональных баз данных и информационных справочных систем

- 1. Компьютерная информационно-правовая система «КонсультантПлюс»
- 2. Профессиональная справочная система «Техэксперт»
- 3. Официальный интернет-портал базы данных правовой информации http://pravo.gov.ru/
- 4. Портал Федеральных государственных образовательных стандартов высшего образования http://fgosvo.ru/
- 5. Портал "Информационно-коммуникационные технологии в образовании" http://www.ict.edu.ru/
- 6. Web of Science Core Collection политематическая реферативно-библиографическая и наукометрическая (библиометрическая) база данных http://www.webofscience.com
- 7. Полнотекстовый архив «Национальный Электронно-Информационный Консорциум» (НЭИКОН) https://neicon.ru/
- 8. Базы данных издательства Springer https://link.springer.com/
- 9. Электронно-библиотечная система издательства «Лань».-Режим доступа http://www.lanbook.com/
- 10. Электронно-библиотечная система «Национальный цифровой ресурс Руконт».- Режим доступа: http://rucont.ru
- 11. Научная электронная библиотека. Режим доступа: http://eLIBRARY.RU
- 12. Бесплатная электронная Интернет-библиотека по всем областям знаний. Режим доступа: http://www.zipsites.ru/
- 13. Интернет-библиотека IQlib. Режим доступа: http://www.iqlib.ru
- 14. Сайт Центральной научной сельскохозяйственной библиотеки. [Электрон. pecypc]. http://www.cnshb.ru
- 15. Российское образование http://www.edu.ru
- 16. Библиотека по естественным наукам PAH http://www.benran.ru
- 17. Научная электронная библиотека http://e-library.ru
- 18. Электронная библиотека учебных материалов по химии http://www.chem.msu.su/rus/elibrary/

6.3. Перечень программного обеспечения

- 1. Операционная система Microsoft Windows XP Professional Russian
- 2. Операционная система Microsoft Windows 7 Professional Russian
- 3. Операционная система Microsoft Windows 10 Professional Russian
- 4. Офисное программное обеспечение Microsoft Office 2010 Standart
- 5. Офисное программное обеспечение Microsoft Office 2013 Standart
- 6. Офисное программное обеспечение Microsoft Office 2016 Standart
- 7. Офисное программное обеспечение OpenOffice
- 8. Офисное программное обеспечение LibreOffice
- 9. Программа для распознавания текста ABBYY Fine Reader 11
- 10. Программа для просмотра PDF Foxit Reader
- 11. Программа Adit Testdesk,
- 12. программное обеспечение модуля УЛК «ХИМИЯ»,
- 13. программное обеспечение аналитических приборов.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебная аудитория для проведения учебных занятий лекционного типа: 1-416 Основное оборудование и технические средства обучения:

Специализированная мебель на 90 посадочных мест, кафедра, рабочее место преподавателя, информационный киоск, доска одноэлементная, проектор мультимедийный Christive LW551i с объективом 1,5-3,0:1., экран 3,5х3м

Характеристика аудитории:

Лицензионное программное обеспечение:

OC Windows 10. Срок действия лицензии — бессрочно. Офисный пакет MS Office std 2010 (100) (Договор 14-0512 от 25.05.2012 Сити-Комп Групп ООО) Срок действия лицензии — бессрочно.

Свободно распространяемое программное обеспечение:

Foxit Reader (Просмотр документов, бесплатная версия, Foxit Software Inc),

Open Office. Свободно распространяемое ПО.

Учебно-наглядные пособия:

Информационные стенды:

Учебные плакаты по всем разделам дисциплины, учебнометодическая литература.

Специализированная мебель на 100 посадочных мест, доска настенная, кафедра, рабочее место преподавателя.

15 компьютеров с выходом в локальную сеть и Интернет, электронным учебно-методическим материалам, библиотечному электронному каталогу, ЭБС, к электронной информационнообразовательной среде.

Лицензионное программное обеспечение:

OC Windows 10 (подписка Microsoft Imagine Premium om 12.12.2016). Срок действия лицензии — бессрочно.

Microsoft Windows Defender (Контракт

 $№0327100004513000065_45788$ от 28.01.2014). Срок действия лицензии — бессрочно.

Лицензионное программное обеспечение отечественного производства:

КОМПАС-3D (Сублицензионный договор №МЦ-19-00205 от 07.05.2019)

Свободно распространяемое программное обеспечение:

LibreOffice – Свободно распространяемое ПО.

Основное оборудование и технические средства обучения:

Специализированная мебель на 16 посадочных мест, доска настенная, рабочее место преподавателя.

Шкаф сушильный ШС-80-01 СПУ, электропечь СНОП, пламенный фотометр ПАЖ-2, электроплитки с закрытой спиралью, специальная химическая посуда.

Учебно-наглядные пособия:

Информационные стенды:

- 1. Периодическая система химических элементов Д.И. Менделеева.
- 2. Электрохимический ряд напряжений металлов.

Учебные плакаты по всем разделам дисциплины, учебнометодическая литература.

Основное оборудование и технические средства обучения:

Специализированная мебель на 16 посадочных мест, рабочее место преподавателя.

Атомно-абсорбционный спектрометр «Квант Z.ЭТА». Системы капиллярного электрофореза «Капель 105» и «Капель 105М». Спектрофотометры «ЮНИКО 2800UV» и «GENESIS». Флуориметр «Флюорат 02-3М». Иономеры «Мультитест» и «Мультитест ИПЛ 101». Система микроволнового разложения «MARS 6», муфельная печь ПДП 8МП, дигестор «VELP 6», центрифуга «SIGMA».

Учебно-наглядные пособия:

Учебные плакаты по всем разделам дисциплины, учебнометодическая литература.

Помещение для самостоятельной работы (читальный зал научной библиотеки)

Учебная аудитория для проведения учебных лабораторных и практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации: 1-424 - Лаборатория неорганической и аналитической химии

Учебная аудитория для проведения учебных лабораторных и практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации: 6—14

8. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

- для слепых и слабовидящих:
- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением, или могут быть заменены устным ответом;
 - обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
 - письменные задания оформляются увеличенным шрифтом;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.
 - для глухих и слабослышащих:
- лекции оформляются в виде электронного документа, либо предоставляется звукоусиливающая аппаратура индивидуального пользования;
 - письменные задания выполняются на компьютере в письменной форме;
- экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.
 - для лиц с нарушениями опорно-двигательного аппарата:
- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- для слепых и слабовидящих:
- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла.
- для глухих и слабослышащих:
- в печатной форме;
- в форме электронного документа.
- для обучающихся с нарушениями опорно-двигательного аппарата:
- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

Учебные аудитории для всех видов контактной и самостоятельной работы, научная библиотека и иные помещения для обучения оснащены специальным оборудованием и учебными местами с техническими средствами обучения:

- для слепых и слабовидящих:
 - электронно-оптическое устройство доступа к информации для лиц с ОВЗ предназначено для чтения и просмотра изображений людьми с ослабленным зрением.
 - специализированный программно-технический комплекс для слабовидящих. (аудитория 1-203)
- для глухих и слабослышащих:
 - автоматизированным рабочим местом для людей с нарушением слуха и слабослышащих;
 - акустический усилитель и колонки;
 - индивидуальные системы усиления звука

«ELEGANT-R» приемник 1-сторонней связи в диапазоне 863-865 МГц

«ELEGANT-Т» передатчик

«Easy speak» - индукционная петля в пластиковой оплетке для беспроводного подключения устройства к слуховому аппарату слабослышащего

Микрофон петличный (863-865 МГц), Hengda

Микрофон с оголовьем (863-865 МГц)

- групповые системы усиления звука
- -Портативная установка беспроводной передачи информации.
- для обучающихся с нарушениями опорно-двигательного аппарата:
 - передвижными, регулируемыми эргономическими партами СИ-1;
 - компьютерной техникой со специальным программным обеспечением.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Инструментальные методы исследований в экологии

Содержание

- 1. Паспорт фонда оценочных средств
- 2. Перечень формируемых компетенций и этапы их формирования
- 2.1 Компетенции, закреплённые за дисциплиной ОПОП ВО
- 2.2 Процесс формирования компетенции в дисциплине «Инструментальные методы исследований в экологии»
- 2.3 Структура компетенций по дисциплине «Инструментальные методы исследований в экологии»
- 3. Показатели, критерии оценки компетенций и типовые контрольные задания
- 3.1 Оценочные средства для проведения промежуточной аттестации дисциплины
- 3.2 Оценочные средства для проведения текущего контроля знаний по дисциплине

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Направление подготовки: 35.03.03 Агрохимия и агропочвоведение

Профиль Агроэкология

Дисциплина: Инструментальные методы исследований в экологии

Форма промежуточной аттестации: Зачет

2. ПЕРЕЧЕНЬ ФОРМИРУЕМЫХ КОМПЕТЕНЦИЙ И ЭТАПЫ ИХ ФОРМИРОВАНИЯ

2.1. Компетенции, закреплённые за дисциплиной ОПОП ВО.

Изучение дисциплины «<u>Инструментальные методы исследований в экологии</u>» направлено на формировании следующих компетенций:

ПКС-1. Способен участвовать в проведении почвенных и агрохимических обследований земель, осуществлять анализ, оценку и группировку почв по их качеству и пригодности для сельскохозяйственных культур, составлять почвенные, агроэкологические и агрохимические карты и картограммы

ПКС-1.3. Участвует в проведении почвенных и агрохимических обследований земель, осуществляет анализ, оценку и группировку почв по их качеству и пригодности для возделывания сельскохозяйственных культур

2.2. Процесс формирования компетенций по дисциплине «Инструментальные методы исследований в экологии»

№ раз- дела	Наименование раздела	3.1	У.1	H.1
1	Раздел 1. Общетеоретические вопросы	+	+	+
2	Раздел 2. Оптические методы анализа в экологических исследованиях	+	+	+
3	Раздел 3. Электрохимические методы анализа в экологических исследованиях	+	+	+
4	Раздел 4. Физико-химические методы разделения и кон- центрирования в экологических исследованиях	+	+	+

Сокращение:

3. - знание; У. - умение; Н. - навыки.

2.3. Структура компетенций по дисциплине «Инструментальные методы исследований в экологии»

ПКС-1. Способен участвовать в проведении почвенных и агрохимических обследований земель, осуществлять анализ, оценку и группировку почв по их качеству и пригодности для сельскохозяйственных культур, составлять почвенные, агроэкологические и агрохимические карты и картограммы ПКС-1.3. Участвует в проведении почвенных и агрохимических обследований земель, осуществляет анализ, оценку и группировку почв по их качеству и пригодности для возделывания сельскохозяйственных культур

Знать (3.1)		Уметь (y. 1)	Владет	ъ (Н.1)
ского сигнала, осо-	Лекции разде- лов № 1-4	использовать свойства химических веществ в лабораторной и производственной практике, выбирать метод анализа и прибор, а также критически оценивать полученные результаты.	Лабораторные занятия и СР разделов № 1-4	методами физико-химического анализа почв, природных и сточных вод, сельскохозяйственных растений, а также навыками работы на наиболее распространенных аналитических приборах.	Лабораторные занятия и СР разделов № 1-4

3. ПОКАЗАТЕЛИ, КРИТЕРИИ ОЦЕНКИ КОМПЕТЕНЦИЙ И ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ

3.1. Оценочные средства для проведения промежуточной аттестации дисциплины Карта оценочных средств промежуточной аттестации дисциплины, проводимой в форме зачета

№ п/п	Раздел дисциплины	Контролируемые дидактические единицы (темы, вопросы)	Контролируемые индикаторы достижения компетенции	Оценочное средство (№ вопроса)
	Раздел 1. Общетеоретические вопросы	Задачи инструментальных методов анализа в экологии. Классификация физико-химических методов анализа. Физико-химические явления и процессы в анализе. Подготовка проб почвы и растений к физико-химическому анализу. Приборы и оборудование для пробоподготовки	ПКС-1.3.	Вопрос на зачете 1-18
	Раздел 2. Оптические методы анализа в экологических исселелованиях	Атомная спектроскопия. Молекулярная спектроскопия. Рефрактометрия. Поляриметрия. Приборы: фотоколориметры, спектрофотометры, рефрактометры, поляриметры.	ПКС-1.3.	Вопрос на зачете 19-69

Раздел 3. Электрохи- мические методы	Потенциометрия. Полярография. Кондуктометрия. Полярография. Определение микроэлементов методом ИВА. Приборы: потенциометры, полярографы, кондуктометры	ПКС-1.3.	Вопрос на зачете 70-85
	Экстракция. Хроматографические методы анализа. Приборы и оборудование для экстракции и хроматографии		Вопрос на зачете 86-106

Перечень вопросов к экзамену по дисциплине «Инструментальные методы исследований в экологии»

- 1. Инструментальные методы анализа главная инструментальная база массового химического анализа в агроэкологии.
- 2. Основные объекты химического анализа в агроэкологии.
- 3. Требования ГОСТ к анализу на основные и загрязняющие компоненты.
- 4. Понятие об аналитическом сигнале.
- 5. Особенности аналитических сигналов в различных физико-химических методах анализа.
- 6. Способы регистрации аналитических сигналов.
- 7. Линейные и экспоненциальные связи между концентрацией и аналитическим сигналом.
- 8. Выбор метода анализа, анализатора, схемы и методики применительно к объекту. Критерии выбора. Ограничения при выборе.
- 9. Правила отбора неоднородных проб. Представительность пробы.
- 10. Необходимая и минимальная масса пробы. Статистические критерии удовлетворительного отбора пробы.
- 11. Погрешности анализа, связанные с пробоотбором.
- 12. Требования различных физико-химических методов к пробоподготовке.
- 13. Способы разложения образца.
- 14. Способы концентрирования и разделения компонентов пробы.
- 15. Оценка правильности результатов. Критерий воспроизводимости.
- 16. Виды погрешностей анализа и способы их учета.
- 17. Закон нормального распределения ошибок, другие законы распределения.
- 18. Значащие цифры и правила округления
- 19. Классификация оптических методов. Их особенности.
- 20. Взаимодействие электромагнитного излучения с веществом.
- 21. Адсорбция и эмиссия квантов излучения как средство получения аналитического сигнала.
- 22. Особенности спектров свободных атомов.
- 23. Особенности спектров молекул.
- 24. Атомно-эмиссионная фотометрия пламени: общие аналитические характеристики метода.
- 25. Сущность метода пламенной фотометрии. Области применения.
- 26. Резонансные линии в спектре свободного атома, их интенсивность.
- 27. Зависимость интенсивности резонансного излучения атома от температуры.
- 28. Связь мощности излучения с концентрацией определяемого элемента.
- 29. Пламя источник возбуждения атомов. Структура пламени.
- 30. Основные виды пламен, применяемые в пламенной фотометрии, их характеристики.
- 31. Диспергирование определяемой пробы в пламени.

- 32. Основные помехи в пламенно-фотометрическом анализе.
- 33. Принципиальная схема эмиссионных пламенных фотометров.
- 34. Подготовка пробы к анализу методом фотометрии пламени.
- 35. Построение калибровочного графика и определение анализируемого вещества.
- 36. Применение пламенной фотометрии для раздельного и совместного анализа на натрий, калий и кальций.
- 37. Косвенные методы определения анионов (фосфатов, сульфатов, галогенов), токсичных металлов (кадмия, ртути, висмута).
- 38. Устройство и работа пламенного анализатора жидкости ПАЖ-2
- 39. Порядок работы и техника безопасности при работе на ПАЖ-2 и техника безопасности.
- 40. Атомно-абсорбционная спектрофотометрия: сущность метода.
- 41. Атомно-абсорбционная спектрофотометрия: общие аналитические характеристики.
- 42. Законы поглощения света свободными атомами в плазме. Резонансное поглощение.
- 43. Интенсивность поглощения, и ее зависимость от концентрации определяемого вещества.
- 44. Способы атомизации исследуемого вещества. Факторы, влияющие на атомизацию и интенсивность поглощения.
- 45. Источники резонансного излучения (лампы с полым катодом).
- 46. Способы диспергирования пробы, требования к анализируемой пробе.
- 47. Принципиальная схема атомно-абсорбционных спектрофотометров.
- 48. Требования к эталонным растворам при атомно-абсорбционной спектрофотометрии и построение калибровочных графиков. Оптимизация режимов анализа.
- 49. Применение атомно-абсорбционной спектрофотометрии для определения микро- и макро-элементов, входящих в состав растений и почв, кормов, сточных вод.
- 50. Порядок работы и техника безопасности при работе на атомно-абсорбционном спектрофотометре.
- 51. Абсорбционная спектрофотометрия растворов: сущность метода.
- 52. Абсорбционная спектрофотометрия растворов: общие аналитические характеристики.
- 53. Взаимодействие света с веществом, электронные спектры поглощения.
- 54. Законы поглощения света (закон Бугера-Ламберта-Бэра).
- 55. Оптическая плотность, молярный коэффициент поглощения.
- 56. Отклонения от закона Бугера-Ламберта-Бэра.
- 57. Спектрофотометрия: принципиальная схема устройства спектрофотометров
- 58. Колориметрия: принципиальная схема устройства фотоколориметров.
- 59. Способы монохроматизации света.
- 60. Основы спектрофотометрического анализа растворов: типы реакций и органические реагенты, используемые абсорбционной спектрофотометрии.
- 61. Основы спектрофотометрического анализа растворов: способы устранения влияния сопутствующих компонентов.
- 62. Основы спектрофотометрического анализа растворов: способы обработки результатов анализа.
- 63. Области применения спектрофотометрии и колориметрии. Элементы, определяемые методами спектрофотометрии и колориметрии. Преимущества методов.
- 64. Устройство и порядок работы на фотоэлектроколориметре.
- 65. Устройство и порядок работы на спектрофотометре
- 66. Рефрактометрия. Принцип метода. Общие аналитические характеристики.
- 67. Рефрактометрия. Оборудование. Область применения.
- 68. Поляриметрия. Принцип метода. Общие аналитические характеристики.
- 69. Поляриметрия. Оборудование. Область применения.
- 70. Классификация электрохимических методов. Их особенности.
- 71. Потенциометрия: сущность метода, общие аналитические характеристики.
- 72. Связь между ЭДС и активностью потенциалопределяющих веществ в растворе. Уравнение Нернста.
- 73. Типы электродов и их характеристики.

- 74. Принципиальная схема потенциометра-иономера.
- 75. Прямая потенциометрия. Область применения. Применяемые электроды, условия проведения измерений,

пределы обнаружения, точность измерений.

- 76. Потенциометрическое титрование. Назначение и условия проведения.
- 77. Кривые потенциометрического титрования.
- 78. Устройство и порядок работы на универсальном иономере И-160М.
- 79. Кондуктометрия: сущность метода.
- 80. Зависимость между электрической проводимостью раствора и суммарной концентрацией ионов.
- 81. Принципиальные схемы электролитических ячеек и кондуктометрического моста.
- 82. Прямая кондуктометрия: принцип метода.
- 83. Отсутствие избирательности аналитического сигнала в кондуктометрии. Погрешность метода. Область применения.
- 84. Кондуктометрическое титрование. Измерение электрической проводимости в ходе реакций нейтрализации, осаждения, комплексообразования.
- 85. Полярография: сущность метода, общие аналитические характеристики.
- 86. Экстракция. Основы метода.
- 87. Полнота экстракции.
- 88. Хроматография как метод разделения и анализа веществ.
- 89. Общая теория хроматографического разделения.
- 90. Классификация хроматографических методов.
- 91. Преимущества хроматографических методов.
- 92. Основные аналитические применения ионообменной хроматографии: определение содержания ионов с помощью вытеснительной хроматографии, отделение катионов от анионов.
- 93. Ионообменные колонки, их устройство, размеры, способы использования и регенерации.
- 94. Количественное определение ионов после ионообменно-хроматографического разделения.
- 95. Сущность элютивной хроматографии как основного вида аналитической газожидкостной хроматографии.
- 96. Возможности газожидкостной хроматографии.
- 97. Аппаратурное оформление газожидкостной хроматографии. Виды колонок и детекторов.
- 98. Выбор оптимальных условий разделения. Уравнение Ван-Деемтера. Обработка хроматограмм.
- 99. Высокоэффективная жидкостная хроматография (ВЭЖХ): сущность метода.
- 100. Аппаратурное оформление ВЭЖХ. Виды колонок: колонки с нормальной и обращенной фазой.
- 101. Растворители, применяемые в ВЭЖХ, их выбор.
- 102. Тонкослойная и бумажная хроматография. Специфические особенности этих методов.
- 103. Понятие об Rf как критерии индикации времени выхода.
- 104. Выбор растворителя и способ проявления в тонкослойной и бумажной хроматографии.
- 105. Количественный анализ в тонкослойной и бумажной хроматографии.
- 106. Гель-хроматография, ее особенности и области применения.

Критерии оценки компетенций.

Промежуточная аттестация студентов по дисциплине «Инструментальные методы исследований в экологии» проводится в соответствии с Уставом Университета, Положением о форме, периодичности и порядке текущего контроля успеваемости и промежуточной аттестации обучающихся. Промежуточная аттестация по дисциплине «Инструментальные методы исследований в экологии» проводится в соответствии с учебным планом в 6 семестре по очной форме обучения, в форме зачета. Студенты допускается к зачету по дисциплине в случае выполнения им учебного плана по дисциплине: выполнения всех заданий и мероприятий, предусмотренных рабочей программой дисциплины.

Оценка знаний студента на экзамене носит комплексный характер, является балльной и определяется его:

- ответом на зачете;
- активной работой на лабораторных занятиях.
- ответов на тестовые задания;
 - выполнения самостоятельной работы.

Знания, умения, навыки студента на зачете оцениваются: «зачтено», «не зачтено».

Критерии оценки на зачете

Результат	Критерии
зачета	
«зачтено»	Обучающийся показал знания основных положений учебной дисциплины,
	умение решать конкретные практические задачи, предусмотренные рабочей
	программой, ориентироваться в рекомендованной справочной литературе,
	умеет правильно оценить полученные результаты расчетов или эксперимента
«не зачтено»	При ответе обучающегося выявились существенные пробелы в знаниях ос-
	новных положений учебной дисциплины, неумение с помощью преподавате-
	ля получить правильное решение конкретной практической задачи из числа
	предусмотренных рабочей программой учебной дисциплины

3.2. Оценочные средства для проведения текущего контроля знаний по дисциплине Карта оценочных средств текущего контроля знаний по дисциплине

			Контролируемые	
$N_{\underline{0}}$	Раздел дисциплины	Контролируемые дидактические	индикаторы	Оценочное
п/п	т аздел дисциплины	единицы (темы, вопросы)	достижения	средство
			компетенции	
1	Раздел 1. Общетеоре-	Задачи инструментальных методов		Опрос
	тические вопросы	анализа в экологии. Классифика-		Отчеты по ре-
		ция физико-химических методов		зультатам само-
		анализа. Физико-химические явле-		стоятельной ра-
		ния и процессы в анализе. Подго-	ПКС-1.3.	боты
		товка проб почвы и растений к фи-		
		зико-химическому анализу. При-		
		боры и оборудование для пробо-		
		подготовки		

2	методы анализа в эко- логических исследова-	Атомная спектроскопия. Молекулярная спектроскопия. Рефрактометрия. Поляриметрия. Приборы: фотоколориметры, спектрофотометры, рефрактометры, поляриметры.	ПКС-1.3.	Опрос Отчеты по ре- зультатам само- стоятельной ра- боты
3	мические методы ана- лиза в экологических исследованиях	Потенциометрия. Полярография. Кондуктометрия. Полярография. Определение микроэлементов методом ИВА. Приборы: потенциометры, полярографы, кондуктометры	ПКС-1.3.	Опрос Отчеты по ре- зультатам само- стоятельной ра- боты
4	химические методы	Экстракция. Хроматографические методы анализа. Приборы и оборудование для экстракции и хроматографии	ПКС-1.3.	Опрос Отчеты по ре- зультатам само- стоятельной ра- боты

Контрольные вопросы и задания

Перечень контрольных вопросов и заданий для выполнения самостоятельной работы по вариантам приведен в Методических указаниях (ЭБС Брянский ГАУ)

Список рефератов

- 1. Приборы и оборудование для пробоподготовки (в соответствии с индивидуальным заданием)
- 2. Приборы: фотоколориметры, спектрофотометры, рефрактометры, поляриметры (в соответствии с индивидуальным заданием).
- 3. Приборы: потенциометры, полярографы, кондуктометры (в соответствии с индивидуальным заданием).
- 4. Приборы и оборудование для экстракции и хроматографии (в соответствии с индивидуальным заданием).